Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Inhibition of Lipopolysaccharide-Induced Neuroinflammatory Events in Bv-2 Microglia by Chestnut Peel Extract

Hyun Kang

Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam, 330-714, Republic of Korea;

For correspondence:-     Email: hyunbio@gmail.com   Tel:+82415501481

Received: 14 July 2013        Accepted: 6 September 2014        Published: 19 October 2014

Citation: Kang H. Inhibition of Lipopolysaccharide-Induced Neuroinflammatory Events in Bv-2 Microglia by Chestnut Peel Extract. Trop J Pharm Res 2014; 13(10):1615-1620 doi: 10.4314/tjpr.v13i10.7

© 2014 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To evaluate the protective effects of chestnut (Castenea cranata Siebold & Zucc., Fagaceae) peel extract on stimulated BV-2 microglial cells as well as its anti-oxidant properties.
Methods: The ethyl acetate fraction of C.cranata peel (CCP) extract was used in the study to evaluate the anti-neuroinflammatory effects in BV-2 microglial cells. Cell viability was performed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyl-tetrazolium bromide (MTT) assay. Lipopolysaccharide (LPS) is used to activate BV-2 microglia. Nitric oxide (NO) levels were measured using Griess assay. Inducible NO synthase (iNOS) expressional levels were measured by Western blot analysis. Tumor necrosis factor-alpha (TNF-α) production was evaluated by enzyme-linked immunosorbent assay (ELISA). Anti-oxidant properties were evaluated by 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay.
Results: LPS-activated excessive release of NO in BV-2 cells was significantly inhibited (p < 0.001 at 100 μg/mL) by CCP extract. LPS-induced excessive production of inflammatory mediator such as iNOS was also significantly attenuated by CCP extract. Further, CCP extract significantly and dose dependently inhibited the TNF-α levels in LPS-induced BV-2 microglial cells (p < 0.05 at 20 μg/mL, p < 0.01 at 40 μg/mL and p < 0.001 at 80 and 100 μg/mL). CCP extract also scavenged DPPH radicals in a dose-dependent fashion (p < 0.05 at 0.01 mg/mL and p < 0.001 at 0.1 and 1 mg/mL) with an IC50 value of 0.08 μg/mL.
Conclusion: Data from this study indicate that CCP extract attenuates neuroinflammatory responses in LPS-activated BV-2 microglia by inhibiting excessive production of pro-inflammatory mediators such as NO, iNOS and TNF-α. The strong anti-oxidant effect of CCP extract suggests that it possesses anti-neuroinflammatory properties.

Keywords: Castenea cranata, Chestnut peel extract, DPPH radicals, Anti-oxidant, Neuroinflammation, BV-2 microglia

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates